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Abstract

This paper presents a fault_tolerant multicast scheme for hypercube multicomputers. The method is based on the routing capability information that is stored in each node. In comparison with previous schemes , this information is able to capture the fault status more precisely. Two multicast algorithms are presented in this paper. These algorithm multicast messages in an attempt to minimize derouting so that time optimality can be achieved. Moreover, the routing capability information is used to guide derouting in an efficient manner when such needs arise. The amount of traffic incurred is addressed in the paper. The hardware design for the algorithms is also discussed. Extensive simulation has been conducted to evaluate the performance of the scheme. 

Introduction

a. In this paper ,we use the concept of routing capability to assist fault-tolerant multicasts in hypercubes with faulty nodes.

b. Time optimality is said to be achieved for a destination if the length of the path form the source to the destination equals the shortest path length under fault-free conditions. The traffic of a multicast is quantified by the total number of distinct links the message traverses to reach all the destinations.
Preliminaries

a. n-dimensional hypercube

b. Hamming distance.

c. A path is feasible if it includes no faulty nodes.

Fault-Tolerant multicast scheme

1. Routing Capability：Let CAk be a binary digit denoting the routing capability of node A with respect to distance k, 1 ≦ k ≦ n .

2. Node A is saide to be k-capable if CAk is 0 , otherwise , is not k-capable.

3. A faulty node F is not k-capable , and any nonfaulty node is automatically 1-capable.

4. If a node has no less than k neighbors that are not (k-1)-capable, its routing capability with respect to distance k is set to 1.

5. Routing matrix

6. If node A is k-capable , for any nonfaulty node B for which H(A,B)=k , there exists a feasible minimum path of length k between A and B.

7. Example :routing matrix M01010
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Fig. 2. Routing capabilities of a five-cube with six faulty nodes (darkened).




ASM Algorithm

We first present a greedy algorithm which is based on the address sum of the destination set D in determining the dimension to forward the message for a destination. This algorithm is a modified version of the greedy  algorithm that is designed for fault-free hypercubes by incorporating the routing capabilities . Address sum of the destination set D ,denoted as as , is the sum of all Rj[I]. The values of as[I] is the number of destinations that are located in the  opposite (n-1) dimensional subcube across dimension  i.

(1)  example 1

a. Node S = ( 11110 )

b. Destination set D =( 11001, 00001, 10000, 00111, 10101, 11101 )     

c. Relative addresses R =( 00111, 11111, 01110, 11001, 01011, 00011)

d. As = (24355)

e. Choose Dimension 3 and test (Ri(k)=1 and MC[k][|Ri|-1]=0)

f. F3 contain U6
g. As=243-4

h. Choose dimension 1 , Not able to guarantee time optimality for any of destinations

i. Choose dimension 4 , F4 ={ U1,U2,U4,U5}

j. As=00100

k. Choose dimension 2 ,F2=U3 
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(2)  example 2

a. Node S = (10101)

b. Destination set D=( 01100, 01011, 00001, 01010, 11110 )

c. Relative addresses R=(11001, 11110, 10100, 11111, 01011 )

d. As = ( 44333 )

e. Choose Dimension 0 

f. F0={ U1, U3 ,U4 }

g. F1={U5}

h. Time optimality cannot be guaranteed for U2 . 

i. Must deroute 

j. F1={U2, U5}.
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MPM Algorithm

The amount of traffic is always a major concern of multicast communication . In ASM , priority is given to the dimension with the largest corresponding address sum value when forwarding a message to a destination , in an attempt to reduce communication  traffic.

MPM is intends to remedy this deficiency while not sacrificing time optimality and reachability.

(1) example 1

a. Node S = ( 11110 )

b. Destination set D =( 11001, 00001, 10000, 00111, 10101, 11101 )     

c. Relative addresses R =( 00111, 11111, 01110, 11001, 01011, 00011)

d. F0={U2,U4}, F1=empty , F2={U1, U3} , F3= {U6} ,F4={U1,U2,U4,U5, U6}

e. Choose dimension 4 and dimension 2
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Hardware implementation
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Fig. 4. The logic diagram for incorporating routing capabilities.
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Directed Routing Capability

1 If node A in a hypercube determines that it is k-capable with directed routing capability , for any nonfaulty node B for which H(A,B)=k , there exists a feasible shortest path of length equal to k from A to B

2. Use of directed routing capabilities in ROUTE has one drawback. Recall that the information contained in a routing matrix can be used to guarantee a bound on the requirement of derouting when undirected routing capabilities are used in ROUTE. This property no longer holds with the directed routing capability. This is due to the fact that an entry of a node's routing matrix being 0 is not necessarily accompanied by that the corresponding neighbor of the node is actually capable with respect to the associated distance.

Conclusion

Future research may include extending the idea of routing capability to other topologies such as meshes. Tori, and low-dimensional networks
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